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ABSTRACT 14 

Length-frequency data and derived catch at age matrices are used in north Atlantic albacore 15 

(Thunnus alalunga) stock assessment conducted within the International Commission for the 16 

Conservation of Atlantic Tunas (ICCAT). Growth is assumed to follow the von Bertalanffy 17 

model with the assumption that growth parameters are constant over time and the same for all 18 

fish. However individual growth variability is an important factor not considered and affecting 19 

the input into the modelling of the population. This study describes a Bayesian hierarchical 20 

model applied to model the individual variability in the parameters asymptotic length (L∞)  and 21 

growth rate (K) of the von Bertalanffy growth model for North Atlantic albacore. The method 22 

assumes that the L∞ and K values for each individual fish are drawn from a random distribution 23 

centered on the population mean values, with estimated variances. Multiple observations of spine 24 

diameter at age for individual fish were obtained by direct reading of spine sections collected in 25 

2011 and 2012. A suite of  back calculation methods were then applied to the measurements of 26 

annuli diameters in the aged individuals observed to back-calculate lengths at each age. The von 27 

Bertalanffy model was fitted to the measured and back-calculated lengths. Models with and 28 

without individual growth variability were compared using the deviance information criterion 29 

(DIC) to find the best model. Normal and log-normal error distribution models were used to 30 

analyse the data. Additionally, subsamples of the data were used to evaluate whether an 31 

unbalanced age-distribution in the data affects estimates of growth parameters.  It was found that 32 

North Atlantic albacore asymptotic length (L∞ ) varies significantly between individual fish but 33 

not  individual  rate growth (K ), for all back-calculation methods. Furthermore, negatively 34 

correlated relationships between von Bertalanffy growth parameters of asymptotic mean (L∞ )  35 

and growth rate (K) were estimated for North Atlantic albacore with the array of  models 36 
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explored. The overall estimated  values of K and population mean  L∞ parameters were similar to 37 

values estimates in previous north Atlantic albacore growth studies.  38 

 39 

Introduction 40 

 41 

Atlantic albacore tuna (Thunnus alalunga) is large pelagic fish that inhabits the temperate and 42 

subtropical waters of the Atlantic Ocean. It is an economically important species that is managed 43 

under the International Commission for the Conservation of the Atlantic tunas (ICCAT). In the 44 

Atlantic three stocks are identified for assessment purposes: North and South Atlantic separated 45 

at 5º N in the Atlantic and a third Mediterranean stock (ICCAT, 2006-2013). Commercial 46 

fisheries in the Northern Atlantic have targeted the albacore stock by surface fisheries since the 47 

1930s and longline fleets beginning in the 1950s (ICCAT, 2013a). The surface fishery represents 48 

roughly 80% of the total catch and the longliners account for 20 % in the last two decades 49 

(ICCAT, 2014). The surface fishery includes three different type of vessels according to the 50 

gears: mid-water pair pelagic trawls, trollers and baitboats. Spanish baitboats and troll landings 51 

represent an approximate participation in the fishery between 55 to 65% of the total annual 52 

surface fishery landings from the North Atlantic stock.  53 

 54 

The last assessment of North Atlantic albacore stock, performed in 2013, reported substantial 55 

uncertainty on the current stock status considering the set of models applied, but it was concluded 56 

that the status of the spawning stock biomass was overfished (ICCAT, 2014). 57 

 58 

North Atlantic albacore are assessed with a variety of models, including a length based model 59 

(Multifan-CL) that requires a growth curve as input, and two other models: VPA and Stock 60 

Synthesis (SS) that are fitted to catch-at-age data calculated from catch-at-length data using a  61 

von Bertalanffy (von Bertalanffy, 1938) growth curve  (ICCAT, 2013a). Moreover, the growth 62 

function is used to derive reference points for sustainable management (Beverton and Holt, 1957; 63 

ICCAT, 2013a).  64 

 65 

Direct aging data have been used to study growth. A number of studies have been conducted 66 

 to describe the growth of northern albacore (Bard and Compeán–Jimenez, 1980; Bard, 1981; 67 

Gonzalez-Garcés and Fariña-Perez, 1983) based on reading of the first fin ray of the first dorsal 68 

fin to determine age and fit a von Bertalanffy (von Bertalanffy, 1938) growth model, considering 69 

constant parameters for the population. The most recent study, assumed constant parameters and 70 

used the first dorsal fin ray section readings along with updated release and recapture tag data in 71 

an integrated model to fit the von Bertalanffy  function (Santiago and Arrizabalaga, 2005). The 72 

analysis of the North Atlantic albacore population (ICCAT, 2014) has incorporated knowledge 73 

on the growth biology based on Bard´s (1981) growth model and Santiago and Arrizabalaga´s 74 

(2005) growth estimates to characterize the  population dynamics of  the north Atlantic albacore 75 

stock. The catch- at-size data for  northern stock is analyzed to derive an annual age-length key 76 

(ALK) by applying the Kimura and Chikuni iterative method (1987) and using Bard´s (1981) 77 

growth parameters (ICCAT, 2014; Ortiz, 2014).  78 

 79 
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Generally, when growth models are fitted to length-at-age data, only one observation is available 80 

for each individual animal. Therefore, it is not possible to determine what fraction of the variation 81 

in measured length is due to measurement error, and what fraction is due to variation in growth 82 

between individual fish. Thus, the residual error in a fitted growth model includes both individual 83 

variation and measurement error. When multiple observations are available for each individual, 84 

for example from tag-and-recapture data, it is possible to evaluate how much individual variation 85 

exists in the growth model parameters, and to estimate the correlation between growth parameters 86 

across individual fish (Zhang et al. 2009).  87 

 88 

None of the growth models use in the assessment of the North stock albacore incorporate 89 

individual variability in the von Bertalanffy growth function parameters. However individual 90 

variation in growth is expected depending on physiological and environmental conditions. The 91 

first model incorporating individual variation in the K and L∞ von Bertalanffy growth parameters 92 

was described by Sainsbury (1980); later Kirkwood and Sommers (1984) continued investigating 93 

variation in maximum length between individuals. Moreover, Hampton (1991) modified those 94 

approaches incorporating a model error component and estimates of a release length 95 

measurement error term fitted by maximum likelihood. The available North Atlantic albacore 96 

tag-release data were analysed to estimate von Bertalanffy growth parameters based on 97 

Hampton´s model that incorporates individual variation in growth, release length measurement 98 

error and model error terms (Ortiz de Zárate and Restrepo, 2001). 99 

 100 

Back calculation methods are employed to estimate length of a fish at previous age based on 101 

reading of calcified structures such as: otoliths, scales and fin rays (spines), among other skeleton 102 

structures. This technique re-creates the life history of individual fish. This method assumes that 103 

there is a relationship between the length of the fish and the skeleton structure, either linear or 104 

allometric (Bagenal, 1978; Campana, 1990; Francis, 1990; Folkvord and Mosegaard, 2002; 105 

Ricker, 1992).  106 

 107 

One albacore spine  aging  study used  a linear relationship recommended by Campana (1990) to 108 

back-calculate lengths (Santiago and Arrizabalaga, 2005); meanwhile other spine studies 109 

incorporated proportional methods to back-calculate lengths (Cheng et al., 2012; Duarte-Neto et 110 

al., 2012; Kopf et al., 2011; Sardenne et al., 2014). Methods for back-calculation of length-at-age 111 

generally assume that the relationship between fish length and hard part diameter is a family of 112 

lines radiating from a common point near the origin, with different slopes for each fish (Francis, 113 

1995). This assumption allows individual fish lengths to vary more when they are larger than 114 

when they are smaller, which is biologically reasonable and performs well in simulation studies 115 

(Schirripa, 2002). However, which back calculation method is best suited to be applied  may 116 

depend on the functional form of relationship between length and annulus diameter, and other 117 

growth characteristics that may vary between stocks (Schirripa, 2002). In the thorough review of 118 

types of back-calculation methods by Francis (1990), he recommended that both regression of 119 

body length-scale to scale radius (BPH) and scale radius- to body length (SPH) be used for each 120 

fish population because neither is clearly preferable. Later, Ricker (1992) proposed the geometric 121 

mean regression using both relationships named by Francis (1990) to estimate the y-intercept for 122 

the back-calculation of length from hard structures annuli, in the absence of any biological 123 

intercept estimate. This method was applied by Pilling et al. (2002) to back-calculate lengths 124 
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from  otolith radius counts over the life span of a number of individuals of tropical emperor 125 

(Lethrinus mahsena) and the lengths were used to fit models that incorporated  individual 126 

variation in growth.  127 

  128 

The objective of this paper is to use multiple length and age reading estimates for individual 129 

albacore tuna, where lengths were back-calculated from the measured diameters of the annuli 130 

readings of cross-sections of  first dorsal fin ray (spine), to evaluate how much the growth 131 

parameters vary between individual fish in the North Atlantic albacore population. Growth 132 

models were fitted and evaluated using Bayesian hierarchical models. Several alternative back-133 

calculation models were used to determine whether the choice of back-calculation method 134 

influences the estimated growth curve parameters or the conclusions about individual variation. 135 

Finally, alternative sub-sets of the data were used to evaluate whether differences in sample sizes 136 

across ages influenced the results, and whether using back-calculated lengths gave different 137 

average results from using lengths at capture only. This study is the first attempt to use an array 138 

of back-calculated lengths from spine measured annulus to estimate growth parameters for North 139 

Atlantic albacore incorporating individual variability in the von Bertalanffy function model.  140 

 141 

 142 

Material and Methods 143 

 144 

Sampling of spines (first fin ray) 145 

 146 

As part of the monitoring of the activity of the Spanish albacore (Thunnus alalunga)  fisheries, 147 

biological samples are collected from the landings at the main fishing ports (Ortiz de Zárate et al. 148 

2013; Ortiz de Zárate et al. 2015, in press). A number of trips were sampled to obtain the length 149 

frequency of the catch by applying random sampling stratified according to commercial 150 

categories of catches landed at the main fishing markets. Random samples of the first fin ray 151 

(spine) from the first dorsal fin were removed during the albacore length sampling procedure. For 152 

each fish, the total fork length (FL) to the nearest centimeter, date, and catch area were noted. 153 

Spines were collected based on a length-stratified sampling protocol by 1 cm class length, 154 

covering the whole length range of albacore landings. Sampling design of spines was stratified by 155 

spatial and temporal strata. Collection of spines was done once a week at selected fishing ports, 156 

covering different geographical areas (1ºx1º degrees), during the fishing season, from June to 157 

November in the Northeast Atlantic (Figure 1). The samples in this study were collected during 158 

the 2011 and 2012 albacore fishing seasons and no sex information was recorded.  The length 159 

composition of all albacore sampled is displayed in Figure 2. 160 

 161 

Ageing from spine readings 162 

 163 

The criteria used to interpret the pattern of observed translucent or hyaline bands (annuli) formed 164 

on the spine cross sections of albacore, was based on the hypothesis of Bard and Compeán 165 

(1980), which assumes that the formation of two annuli per year throughout the life span of North 166 

Atlantic albacore corresponding to its migratory behaviour between feeding (spring-summer/ 167 



 5

autumn-winter) and spawning grounds (Bard, 1981). Albacore birth date was assumed to be the 168 

first of June, in agreement with a protracted spawning period from March to October, with a peak 169 

in June-July (ICCAT, 2006-2013) in the North Atlantic Ocean. For age determination, the first 170 

visible annulus was identified as formed during the first migration of juvenile albacore from the 171 

spawning area to the wintering area at an approximate age of six months (Bard, 1981). The 172 

appearance of the first annuli has been validated with daily increments reading on otoliths from 173 

the North Atlantic albacore (Lu et al., 2007) and daily increments readings on otoliths of Pacific 174 

albacore (Bigelow et al., 1993, 1995).Then the successive annual mark formed by double annuli 175 

(spring-summer and autumn) and a dark growth band was assigned to age group 1 and, by 176 

counting successive annual marks formed, the age of each fish was determined. If an autumn 177 

annulus was already formed, age was determined as belonging to the same year class (i.e. 1 year 178 

class). Some spine sections had formed a single translucent annulus and dark growth zone, as an 179 

annual mark, however, in the majority of spines the double spring-summer annuli and dark 180 

growth zone annual pattern was visible. For north Atlantic albacore, oxytetracycline injections of 181 

tagged albacore released and recaptured, being at liberty one and two years, although samples 182 

size was small (n=21), seemed to verify that one annulus is formed on spring-summer and 183 

another in autumn, likewise, an alternative observed pattern in adult albacore (> 5 years), was 184 

defined by  forming one annulus per year, consequently a single  annulus and dark zone was 185 

associated with a given age in some older individuals (Ortiz de Zárate et al., 1996). Recently a 186 

north Atlantic albacore growth study using spine readings, suggested that one of the annual rings 187 

is formed mainly between July and September (Santiago and Arrizabalaga, 2005). Occasionally, 188 

vascularization obscured the first double annuli, the spring one for age 1 and occasionally even 189 

for age 2, or either spring or autumn annuli or both, in older fish. Estimated mean annulus 190 

diameter (mm) and standard deviation (s.d.) for age group 1, 2 and 3 by month were applied to 191 

identify the  corresponding  first visible annulus and the following visible annuli were counted 192 

from this value (Ortiz de Zárate et al., 2005). In our study, the identified first annuli  represented 193 

16% (autumn annulus age 1) and 2.6% (spring-summer or autumn annulus age 2) of the two 194 

combined year sample. 195 

The aging method used in our study was tested previously to estimate the precision and relative 196 

bias by applying the procedure described by Eltink (2000) among three readers. The overall 197 

coefficient of variation (CV) was 8.5% and an overall agreement of 82% between readers was 198 

observed (Ortiz de Zárate et al. 2005), which implied a good level of precision (Campana, 2001; 199 

Campana et al., 1995). For this study, only one reader was generally involved in readings. In 200 

2011, a sub-sample of 75 fish and in 2012, a subsample of 175 fish, including many of the older 201 

fish where ages might be more ambiguous, were read by two readers independently. Age 202 

readings were compared with two different tests of symmetry using χ2 statistics (Bowker,1948; 203 

Evans and Hoenig,1998). Precision between readers was estimated with a new approach 204 

developed by McBride (2015) and implemented on template by S. Sutherland (NOAA). The 205 

results of the two independent readers showed no evidence of asymmetry in 2011, for the 206 

Bowker´s test of symmetry (Chi.sq= 13.33; d.f.=10, p= 0.21) and Evans and Hoenig´s test 207 

(Chi.sq= 1.84; d.f.=3, p= 0.61). In 2011, the estimated CV was 9.7 %, considered an acceptable 208 

value (Campana, 2001). Comparison of the two independent readings in 2012 shows evidence of 209 

asymmetry for the Bowker´s test (Chi.sq= 18.9; d.f.=8, p= 0.015), but for the Evans-Hoenig´s test 210 

(Chi.sq= 7.79; d.f.=3, p= 0.051) the null hypothesis of symmetry could not be rejected. The 211 
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estimated CV among two readers was 8.6 %. The number of samples that disagreed were 24 and 212 

50 in 2011 and in 2012 respectively. Those samples were read again jointly by the two readers 213 

and agreement was reached to a final age. Only 2 and 3 spines from the last joint reading were 214 

discarded in the two consecutive years 2011 and 2012. The final sample used for the analysis 215 

included all the single-reader ages, and the agreed ages from the double-reader subsample.  216 

Finally, based on the annuli pattern formation having either the spring-summer or the autumn 217 

annulus close to the edge of the section read and the date of capture, only one single annulus 218 

measured diameter, either spring or autumn, in all the annual double annuli read was used in the 219 

back-calculation of length to obtain the growth trajectory of each individual fish.  220 

 221 

Statistical analysis 222 

 223 

Growth increment analysis 224 

 225 

Data were available for fish that were captured in both 2011 and 2012. To evaluate whether there 226 

was any annual variation or variation between cohorts in growth increments, we calculated 227 

annual growth increments for each measured spine diameter. The annual increment was the 228 

change in spine diameter from one spine annulus to the next, divided by the difference in age 229 

between the two spine annulus (usually one year, sometimes 0.75 or 1.25 year depending on 230 

when the fish was captured, and whether the spring-summer or autumn annulus was used; see 231 

growth model section below for an explanation of how ages were calculated). A linear model was 232 

used to evaluate the effect of age (as a numerical variable) and cohort (as a factor) on the size of 233 

the annual increment. The interaction between age and cohort was included to evaluate whether 234 

there was an effect of year. To ensure an adequate sample size at each age and cohort, only 235 

cohorts from 2009 and later, for fish of age four or less at the time of the increment formation, 236 

were included.  237 

 238 

Length back-calculation 239 

 240 

The geometric mean regression (GMR)  allows estimation of the y-intercept to apply as a 241 

biological correction factor to mitigate Lee´s phenomenon (Lee, 1912) when  back calculating  242 

length from spines (Ricker, 1992). The observed data in 2011 and 2012 were combined and fitted 243 

to GMR and simple linear regression models following three methods:  244 

 245 

Method 1. The geometric mean regression method (Ricker, 1992; Pilling et al. 2002) was used to 246 

calculate the following regression using all the measured fish fork lengths and spine section 247 

diameters at capture from the 2011 and 2012 data sets combined: 248 

 249 

(1)  250 

 251 

(2)  252 

 253 
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Where Si is the spine diameter at capture for fish i, Li is the length at capture for fish i, aS, bS, aL, 254 

bL are the regression coefficients, and εS,iand εL,i are normally distributed error terms with means 255 

of zero, and estimated variances. The parameters of the geometric mean regression, a and b, were 256 

calculated as: 257 

 258 

(3)  259 

 260 

and 261 

 262 

(4)  263 

 264 

Then the Fraser-Lee (Fraser, 1916, Lee, 1920) proportional model was applied to back-calculate 265 

lengths (Li,j) for the all the measured annuli for each individual fish using the following equation: 266 

 267 

(5)  268 

 269 

Where Li is the length of fish i at capture, Si is the spine diameter at capture, Li,j is the back-270 

calculated length age j, Si,j is the spine diameter at age j and a is the y-intercept from the GMR 271 

regression. The  standard error ei,j of Li,j is assumed to equal the standard error calculated from the 272 

regression of L on S. 273 

 274 

Method 2. The geometric mean regression (GMR) on log-transformed data (Ricker 1992, 275 

Folkvord and Mosegaard, 2002) was fit to the combined data set to estimate the constant of 276 

allometry (ν). 277 

 278 

 279 

(6)  280 

 281 

(7)  282 

 283 

(8)  284 

 285 

Then the method proposed by Monastyrsky (1930) was used to back-calculate lengths (Li,j) for all 286 

the measured annuli for each individual fish using the following equation:  287 

 288 

(9)  289 

 290 

The standard error ei,j of Li,j is assumed to equal the standard error calculated from the regression 291 

of log(L) on log(S), converted from normal to lognormal. 292 
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 293 

Method 3. When back-calculated lengths are used to fit a growth curve, the choice of back-294 

calculation model may constrict the amount of individual variation the growth model can 295 

estimate in each of the growth parameters (Francis, R.I.C.C., personal communication, Francis 296 

1995). To test whether the use of a proportional back-calculation method influenced the degree of 297 

individual variation in the growth parameters, a back calculation method was applied that did not 298 

make this assumption. The simple linear regression of log of spine diameter at capture against log 299 

of length at capture (equation 7) was applied. The same equation was used to infer the back 300 

calculated lengths at previous ages from the measured annuli at previous ages. Linear regression 301 

implies that the same slope between L (length) and S (diameter spine) can be applied to all fish. 302 

This simplified approach is not recommended for back-calculation because the proportional 303 

methods have been found to be more accurate (Guteuter, 1987; Francis, 1990; Folkvord and 304 

Mosegaard, 2002; Schirripa, 2002). However, the method is useful for testing the hypothesis, 305 

proposed by Francis (1995), that the individual variation found in the growth curve is a 306 

consequence of the assumed back-calculation method.  307 

 308 

All regressions and back-calculations were conducted in R version 3.1.2 (R Core Development 309 

Team 2015). The means and standard errors of the predicted lengths from each back-calculation 310 

method were used as inputs to the growth models (see next section).  311 

 312 

Graphical tools were used to examine for homogeneity and  normality of the data being regressed 313 

(Zuur et al., 2010). The predicted mean length at  age estimated  by the three methods were  314 

examined for comparison across methods and against measured lengths.   315 

 316 

Growth models 317 

 318 

A quarterly cycle was determined to describe annual variability in growth with  relation to  birth 319 

date. Thus for each individual fish, the decimal age at capture was estimated based on the quarter 320 

in which the fish was captured. Fish captured in June were age x.0, fish captured in July, August 321 

or September were age x.25, and fish captured October, November or December were age x.5, 322 

where x is the age in years inferred from the spine reading. For every fish, the measured length 323 

and age at capture were used in the model fitting. For fish aged 2 or more, back-calculated ages 324 

and lengths were used for all the ages prior to capture for which an annulus was visible. The 325 

back-calculated lengths were assumed to apply to ages that were either x.0 or x.25 years of age, 326 

depending on whether the spring-summer or the autumn band was measured.  327 

 328 

The multiple observations from 2011 and 2012 of measured and back-calculated lengths and ages 329 

were used to fit the parameters of the von Bertalanffy growth model with possible individual 330 

variation in the growth parameters (Helser and Lai 2004, Zhang et al. 2009): 331 

 332 

(10)  333 

 334 

Where Lt,i is length at age t for individual fish i, L∞,i is asymptotic mean length for fish i, Ki is the 335 

growth rate for fish i, and t0 is the age at zero length, assumed to be the same for all fish, and εi is 336 
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a normally distributed error term with an estimated variance. In the most complex model, both Ki 337 

and L∞,i were estimated as normally distributed random effects with estimated means and 338 

variances (Table 1). Alternative models treated L∞, or K as constant across the population.  339 

 340 

The variance σ of the error term εt,i  was either assumed to be constant across all the data points 341 

or it was informed by the standard errors of the predicted lengths from the back calculation 342 

model. For measured lengths, the residual standard deviation was always assumed to be constant. 343 

For the back calculated lengths, the residual standard deviation was either the same as the 344 

residual standard deviation of the measured lengths, or it was assumed to be proportional to the 345 

estimated standard error et,i of the length prediction: 346 

 347 

           if length is measured 348 

(11)        if length is back-calculated 349 

where σmeasured  and σback are estimated parameters.  350 

 351 

The majority of the fish in the back-calculated dataset were only one or two years old. Thus, the 352 

sample size of young fish was much higher than the sample size of older fish. When fitting 353 

growth curves, a very different sample size in each age category can lead to bias in estimates of 354 

growth parameters (Thorson and Simpfendorfer, 2009). Therefore, we ran the models with the 355 

fish subsampled to give a more even sample size among the younger ages. All fish that were 356 

captured at age 5 or higher were included, but fish captured at age 1 to 4 were sub-sampled so 357 

that there were roughly 80 fish in each age, including both back-calculated and measured lengths. 358 

To further evaluate the implications of having an unbalanced sample across ages, we also fit the 359 

model with only fish age 5 or less.  360 

 361 

As an additional model test, the growth model was fitted to the observed lengths only. With only 362 

measured lengths, there was only one sample per individual fish, so individual variation in 363 

growth could not be estimated. To evaluate whether sample size in each age category caused bias 364 

in the results, the model was fitted to all the observed lengths, and also to a dataset in which the 365 

younger ages were sub-sampled to a sample size of 30 per age category, and to only fish age 5 or 366 

under five.  367 

 368 

In addition to the assumed normal error distribution, we fit the growth models with the log-369 

normal distribution error and compared the fit of the model.   370 

 371 

(12)   372 

 373 

 374 

The models were fitted in a Bayesian framework, with uninformative priors on all the parameters 375 

(Table 1). All analyses were conducted in JAGS, which uses the Gibbs sampler form of the 376 

Markov Chain Monte Carlo (MCMC) algorithm; JAGS was run using the R2Jags package for the 377 

R statistical software (R Development Core Team 2015, Su and Yajima 2014). Two MCMC 378 
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chains were run with a burn in of 50,000 and an additional run of 200,000 with a thin of 20. The 379 

Gelman-Rubin diagnostic was used to ensure convergence of the    MCMC chains on the 380 

posterior distribution (Gelman, 2007). Models that had not converged according to this diagnostic 381 

were run for an additional 200,000 iterations. To compare models that included individual 382 

variation on different growth parameters, the deviance information criterion (DIC) was used 383 

(Lunn et al. 2013). The DIC weights the trade-off between model fit and the number of 384 

parameters estimated, and the model with the lowest DIC is best supported by the data. Only 385 

models fitted to the same back-calculated length data-set can be compared with the DIC. 386 

 387 

 388 

 389 

Results 390 

 391 

In 2011, a sample of 583 spines collected from June to October was examined, for fish ranging 392 

from 41 to 120 cm (FL) size, likewise in 2012, spines examined amounted to 902 in total with a 393 

length range 40 to 112 cm (FL), samples were collected from June to November respectively and 394 

no sex information was available to be incorporated in the analysis.  395 

 396 

 Growth increment analysis 397 

 398 

Of the 1485 individual fish collected in 2011and 2012, 84% were three years old or younger. 399 

From these fish there were 1891 distinct spine increments (Table 2).  The size of the growth 400 

increment declined linearly with the age at which the spine formed, but there was no significant 401 

influence of the cohort on this trend (Table 3). Therefore, for the remainder of the analyses, data 402 

from both years were combined.  403 

 404 

 405 

Back-calculation models 406 

 407 

A total number of 1891 annuli observations were used in the three models applied to back-408 

calculate length.  409 

 410 

The three regression models used for back-calculation of length found high correlation between 411 

the measured length at capture and the diameters of the spine section. Geometric mean regression 412 

(GMR) and simple log-linear regression (Method 1 and Method 3) explained 95% of the variance 413 

on the observed data (adjusted R2 = 0.951, p-value< 0.05, a= 15.84, b= 14.86), likewise the log-414 

geometric mean regression  (log-GMR) model also showed a high correlation between the length 415 

at capture of fish and the diameter of the spine section, the variance explained was 95% (adjusted 416 

R2 = 0.953, p-value< 0.05, a= 3.27, b= 0.76 in log scale).  417 

 418 

The dispersion of the residuals against fitted values and the Quantile-quantile (QQ) plots for the 419 

GMR and log-GMR regression model fits are shown in Figures 3a,b,c,d.  The residuals indicate 420 

that the regressions on log(L) and log(S) give the best fit from the point of the distribution of 421 

variance (Figure 3c,d). Therefore the log-GMR model was chosen as the best to back-calculate 422 
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length and used to fit the different models of growth. Some additional model runs were done 423 

using the GMR for comparison.  424 

 425 

Mean length-at-age back calculated and their standard deviations from each of  the three 426 

methods: GMR and Fraser-Lee (1), log-GMR and Monastyrsky (2), log-linear regression (3) and 427 

the observed mean length data are  displayed in Table 2. Of the three back-calculation models, 428 

the two GMR methods gave similar mean predicted lengths, particularly for age groups 1 to 5 429 

showing similar variation. For fish above age 5, the observed variation is larger, due to small 430 

sample size for larger fish. The back-calculation approach appears to underestimate the 431 

variability in lengths of younger fish. Overall, the CV of different mean length-at-age did not 432 

exceed 10% neither for the observed nor the three back-calculations methods. The highest CV 433 

was found for the observed mean length of age 1 albacore.   434 

 435 

In the three models, the range of variation in lengths at age was comparable between the mean 436 

predicted lengths and the measured lengths for spines of a similar diameter (Figure 4a, b, c).  The 437 

regression did not allow individual fish to have different mean predictions so that its mean 438 

predictions are a simple line (Figure 4d). Method 3 assumes that all variation in length at age 439 

between individual fish is residual error. On the other hand, the proportional back-calculation 440 

methods, are able to predict lengths for particular fish that vary from the mean prediction at a 441 

given spine diameter.    442 

 443 

 444 

Growth models  445 

 446 

When the fish were subsampled to give a roughly similar sample size in the well-sampled ages, 447 

the resulting sample contained 470 observations from 97 individual fish (Figure 5b). Because it 448 

was necessary to keep all the back-calculated lengths for each fish that was selected in the sub-449 

sample, the younger ages are dominated by back-calculated lengths. Also, it was not possible to 450 

have completely balanced sample sizes in all the younger ages. Nevertheless, the subsample is 451 

more balanced than the complete dataset. The subsample for measured lengths only included 200 452 

fish (Figure 5e).   453 

 454 

For all three back calculation methods, for both the complete sample and a more balanced sub-455 

sample, we ran models with: (1) individual variation in both L∞ and K, (2) individual variation in 456 

L∞ only, and (3) no individual variation. For the log-GMR back-calculation method 2, which we 457 

considered to be the best back-calculation method, models with different error structures were 458 

also considered. With all the combinations of the data sets, error structures, and mixed models , 459 

there were 27 candidate growth models. All had adequate convergence diagnostics (see 460 

Appendix) and appeared to fit the data well.  461 

 462 

When a balanced sub-sample of the data was used, for all three back-calculation methods the DIC 463 

preferred the growth model that included individual variation in L∞ but not K (Table 4). For the 464 

log-GMR and log-regression methods, this model was also preferred when the subsample was 465 

used; however, for the complete dataset using the log-regression method, the DIC preferred the 466 

model with no random effects. In addition, for the log-GMR subsample, the DIC preferred the 467 
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normal error structure to lognormal, and equal residual variances to SE-weighted residual 468 

variances. For the complete dataset of log-GMR data, the DIC preferred lognormal error to 469 

normal error, for the subsample, normal was preferred. Considering that the subsampled data is 470 

more balanced across ages, and that the log-GMR is the best back-calculation method, the best 471 

dataset is log-GMR subsample. For this dataset, the DIC prefers the model with constant residual 472 

error, normal residuals, and individual variation in L∞ only. 473 

 474 

Although the choice of back-calculation method (log-GMR method 2 versus log-regression 475 

method 3) did not influence which parameters had significant individual variation, it did 476 

influence the amount of individual variation between fish in L∞ (Figure 6). Though the models 477 

with individual variation in L∞ were generally preferred for all back-calculation models, there 478 

was a greater variation in L∞ for the model fitted to log-GMR lengths than to the model fitted to 479 

lengths inferred by log-regression. Individual fish had L∞ values that varied from 108 to 135 cm 480 

in the log-GMR model, but only from 116 to 134 in the regression model (Figure 6). The GMR 481 

model (method 1, not shown) was similar to the log-GMR. 482 

 483 

The back-calculation methods influenced the values of the mean for L∞ and K, but not as much as 484 

the sample size and distribution of fish ages in the sample (Figure 7, Table 5). Datasets 485 

dominated by younger fish tended to estimate larger values of L∞ and smaller values of K, but 486 

this effect was less pronounced when random effects were included in the model. When only 487 

measured lengths were used, using the complete dataset, which was dominated by young fish 488 

gave values of L∞ and K similar to those calculated using only young fish (left 3 points in Figure 489 

7). Similarly, when back-calculated lengths were fitted with no random effects, the model 490 

estimated larger values of L∞ for the complete dataset then for the subsample (right two points in 491 

Figure 7). The model with a random effect in L∞  was less sensitive to sample sizes, with similar 492 

estimates of the mean of L∞ for the complete dataset and the subsample (middle points in Figure 493 

7).  494 

 495 

The main difference between the models with and without random effects was the allocation of 496 

variance (Table 5). The random effects model estimated a smaller residual variance σε than the 497 

fixed effects model, because some of the variability in length at age was interpreted as variation 498 

in growth between individuals. The random effects model also estimated a slightly lower 499 

correlation between the mean values of L∞  and K. The model with random effects in L∞ implies 500 

that most of the variation in length at age is individual variation (Figure 8). The mean growth 501 

curve is quite similar with or without random effects (Figure 8).  502 

  503 

 504 

Discussion 505 

 506 

We were unable to find any annual variability between cohorts or years in the growth increments, 507 

possibly because we only had two years of captures in the data set. With a longer time series, it 508 

might be possible to evaluate whether some years had larger growth increments than others 509 

within the random effects modeling framework (Shelton and Mangel, 2012).  510 

 511 
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The high correlation found between length and spine radius, gave support to the back-calculation 512 

methods applied to derive information about growth for each individual albacore (Ricker, 1992).  513 

The  application of GMR methods allowed calculation of a y- intercept value to be used along 514 

with a proportional method to back-calculate lengths; thus, results were biologically plausible 515 

(Folkvord and  Mosegaard, 2002; Ricker, 1992). In this context, the back-calculation proportional 516 

method followed in our approach accommodated previous knowledge on statistical efficiency of 517 

proportional model application (Guteuter, 1987 in Quinn and Deriso, 1999) also applied in other 518 

tuna species (Cheng et al, 2012; Duarte-Neto et al., 2012) and billfishes (Kopf, et al., 2011).  519 

  520 

The deviance information criterion (DIC) preferred the models with individual variation in L∞ but 521 

not K for both the standard log-GMR back-calculation method, and when a simple regression was 522 

used to back calculate lengths. Accordingly, the result that variation exists in L∞ but not K seems 523 

not to depend on the assumption of growth from a common intercept in the back-calculation 524 

model. Thus, we can probably conclude that the result that there is more variation in L∞ than K is 525 

not an artifact of the functional form of GMR back-calculation, as suggested by Francis (1995), at 526 

least for North Atlantic albacore.  527 

 528 

Similar results about individual variation in L∞ but not K  were found from analyses on length 529 

increment derived from the release-recapture information available from tagging experiments ( 530 

models  3, 4 and 7 and   Tagging (equation3) in Table 6). In contrast, another albacore growth 531 

study based on a model that integrated spines and tagging data did not find variability in L∝ (last 532 

model in Table 6, Santiago and Arrizabalaga, 2005). None of the analyses, neither those  using 533 

tagging data (Table 6) nor our study (Table 5), found  individual variation on the growth rate 534 

parameter (K). Thus individual variation on L∝ only seems to be the most plausible model for 535 

North Atlantic albacore. On the other hand, a simulation  study by Eveson et al. (2007) 536 

concluded that when variability exists in both growth parameters it is rare that both sources of 537 

variability can be detected; therefore, they recommended using models that include individual 538 

variation in both parameters even if only one was found to vary significantly.  539 

 540 

The means of L∞ and K are consistent with previous studies based on spine readings, or the spine 541 

and tagging  data integrated models (Table 6). However, estimates derived from tagging data 542 

were affected by low reporting rates of fish at longer time at liberty and a paucity of return data 543 

for larger fish from commercial fleets, consequently smaller asymptotic L∞ were estimated (Table 544 

6, Ortiz de Zárate and Restrepo, 2001; Santiago and Arrizabalaga, 2005). Our estimates,  a mean 545 

asymptotic L∝ of 120 cm and growth rate (K) of 0.21, are nearly identical to the values (L∝ =122 546 

cm, K= 0.209) found by Santiago and Arrizabalaga (2005) based on both spines and tagging data, 547 

and used in the current assessment (ICCAT, 2013b). The introduction of individual variation into 548 

the growth model, which is biologically realistic, does not lead to a substantial change in 549 

expected distribution of lengths at age for this species, given the similar length range covered in 550 

both studies, compare Santiago and Arrizabalaga (2005, their Table 2) to   our  study (Figure 2).  551 

 552 

Using either all the data or a more balanced subsample gives somewhat different estimates of the 553 

mean L∞ and K parameters (Figure 7). Datasets dominated by younger fish tended to estimate 554 

higher values of L∞ and lower values of K. The mean values of L∞ were slightly higher when only 555 



 14 

measured lengths were used than when the back-calculated lengths were analyzed (Figure 7). 556 

Few large fish were included in the dataset (>90 cm), which may be the reason that small changes 557 

in the modeling assumptions gave different L∞ results. A dataset that is more informative about 558 

L∞ might be more robust to the choice of estimation methodology. The length  range of albacore 559 

samples used in our study represents the selectivity of surface fleets that target albacore in North 560 

Atlantic stock and represent nearly 80% of total catch (ICCAT,2013b; ICCAT, 2014). 561 

Nevertheless, availability of a larger sample of the adult albacore fraction of the population 562 

would improve precision on older albacore aging. 563 

 564 

Our study corroborates the hypothesis of negatively correlated asymptotic mean length (L∞) and 565 

growth rate (K)  for north Atlantic albacore, as has been found in  other species (Helser and Lai, 566 

2004; Pilling et al., 2002). The correlation between L∞ and K obtained from the random effects 567 

model (-0.85) is very close to the negative correlation of -0.8 assumed in simulation studies 568 

(Hampton and Majkowski, 1987).   569 

 570 

There are some caveats involved in the use of spines rather than repeated measurements of length 571 

to estimate individual variability in estimate individual variation in growth. The method assumes 572 

that there is a high correlation between spine length and fish length, that the functional 573 

relationship between fish length and spine length is known, and that the relationship does not 574 

change over time or between individuals (Schirripa 2002). We found a clear linear relationship 575 

between log(spine diameter) and log(fork length), which supports this approach (Figure 4).  576 

It is worth noting that estimates of the mean growth parameters based on spine readings at 577 

capture (Measured only, Table 5), yielded similar growth parameters to those calculated with 578 

back-calculated lengths (Table 5, best model, and fixed effects). This could be interpreted as a 579 

verification that the backcalculation is not introducing bias.  580 

 581 

Because of size-selectivity in the fisheries, lengths of fish captured at age one may be skewed 582 

larger than the lengths at age 1 back-calculated from fish caught at older ages. In general, mean 583 

length-at-age 1 estimates from observed length varies across studies (Table 2, Bard, 1981, 584 

Santiago and Arrizabalaga, 2005). In our study, using Method 2 to reconstruct the individual 585 

trajectory by back-calculation estimated the smallest mean length-at-age 1. Size-selectivity may 586 

explain some of the differences between studies, and it is not clear which methods generate the 587 

least biased distribution of lengths at age 1.  588 

 589 

 590 

Our study advances understanding of growth of the north Atlantic albacore population by 591 

including random effects in the von Bertalanffy growth parameters to model individual variation 592 

on growth. The Bayesian hierarchical modeling approach performed well when incorporating 593 

individual trajectories to model growth of north Atlantic albacore  and the fitted model explained 594 

the current growth of the North Atlantic population of albacore. This approach allows testing 595 

hypotheses about the back-calculation method and about the impact of size of the sample and 596 

length coverage for the albacore von Bertalanffy growth model of North Atlantic albacore. 597 

Further research on the uncertainty on age of young albacore (i.e. age one) and the differential 598 

growth rate for sexually mature males and females can be addressed in future analyses.  599 

Moreover, the time effect of growth needs to be tested with longer time series to evaluate whether 600 
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there is year-to-year variability in growth. Future simulations studies to evaluate modeling 601 

growth would contribute to explore uncertainties about the growth of this stock. 602 

 603 

 604 

 605 

 606 

 607 
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 858 

Table 1. Estimated parameters in the full growth model and their priors. For models without 859 

individual variation in a parameter, the values for each individual fish are equal to the population 860 

mean.  861 

 862 

Parameter Description Prior 

L∞,i Individual fish asymptotic length Normal(μL,σL) 

Ki Individual fish growth rate Normal(μK,σK) 

μL Population mean L∞ Lognormal(0,1000) 

σL Standard deviation in L∞ between fish Uniform(0.0001,1000) 

μK Population mean growth rate Lognormal(0,1000) 

σK Standard deviation in K between fish Uniform(0.0001,10) 

t0 Population mean age at L=0 Normal(0,1000) 

σε Standard deviation of the measurement error ε Uniform(0.0001,100) 

σmeasured Standard deviation of the measurement error ε Uniform(0.0001,100) 

σback Standard deviation multiplier for back calculated lengths Uniform(0.0001,100) 

 863 
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 864 

 865 

Table 2. Albacore observed length (cm) and back-calculated length (cm) obtained by the three  methods described in the study  for the 866 

aggregated samples from 2011 and 2012. 867 

 868 

 869 

                                                                Observed Length   
    

BCL Method 1-Fraser-Lee 
  

BCL Method 2-Monastyrsky 
BCL Method 3

Regression  

Age N mean st dev CV% SE  N mean st dev CV% SE  mean st.dev CV% SE  mean st.dev

1 538 53.3 6.49 12.2 0.28  898 52.2 3.7 7.2 0.12  51.8 4.1 7.9 0.14  52.1 3.5

2 348 64.4 3.97 6.2 0.21  594 63.9 3.9 6.0 0.16  64.2 4.1 6.4 0.17  64.1 3.3

3 364 74.7 4.42 5.9 0.23  234 74.1 4.4 5.9 0.29  74.8 4.6 6.1 0.30  74.6 3.6

4 155 83.4 4.53 5.4 0.36  81 84.0 5.2 6.1 0.57  84.9 5.3 6.3 0.59  84.2 3.8

5 41 90.8 4.09 4.5 0.64  39 93.3 6.3 6.7 1.01  94.1 6.3 6.7 1.00  91.6 4.4

6 11 99.1 5.45 5.5 1.64  26 100.2 7.8 7.8 1.53  100.7 7.5 7.5 1.48  97.4 5.6

7 13 106.6 7.87 7.4 2.18  13 100.7 5.3 5.3 1.48  101.1 5.2 5.2 1.45  98.5 5.1

8 9 102 4.33 4.2 1.44  3 107.8 5.0 4.7 2.90  108.0 5.1 4.7 2.92  103.8 3.4

9 4 110 4.32 3.9 2.16  1 100.4     101.4     106.3  

10 1 105     1 103.2     104.0     109.0  

11 1 108         1 106.9         107.4         112.5   

Total 1485      1891             

 870 

 871 

 872 

 873 

 874 

 875 
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Table 3. Analysis of variance for the model of the effect of numerical age and the factor cohort 876 

on annual growth increment.  877 

 878 

 Df Sum Sq Mean Sq F value Pr(>F) 

age 1 3.47 3.47 93.32 <0.0001 

cohort 2 0.09 0.04 1.15 0.32 

age:cohort 2 0.09 0.05 1.24 0.29 

Residuals 1328 49.36 0.04   

 879 

 880 

 881 

Table 4. DIC comparison of growth models fitted to lengths back-calculated by the three 882 

methods. The best growth model for each dataset is the one with ∆DIC =0. All models had 883 

normally distributed residuals and constant residual variance except where noted. 884 

 885 

Data Subsample Error model Random effects ∆DIC 

GMR all data  L∞, K 182.10 

   L∞ 0.00 

   none 135.57 

GMR subsample  L∞, K 112.78 

   L∞ 0.00 

   none 70.35 

log-GMR all data  L∞, K 614.92 

   L∞ 497.31 

   none 893.48 

  se weighted L∞ 19.99 

  lognormal L∞ 0.00 

log-GMR subsample  L∞, K 129.49 

   L∞ 0.00 

   none 557.78 

  se weighted L∞ 47.53 

  lognormal L∞ 14.05 

log-regression all data  L∞, K 2611.59 

   L∞ 2536.50 

   none 0.00 

log-regression subsample  L∞, K 5.56 

   L∞ 0.00 

   none 144.66 

 886 

 887 

 888 

 889 



 24 

Table 5. Medians and 95% credible intervals of estimated parameters from the DIC best model, 890 

which has individual variation in L∞, with the model with no random effects and the model 891 

applied to measured fish only shown for comparison. Cor(LK) is the posterior correlation 892 

between the mean value of L∞ and the mean value of K.  Data are subsampled and the log-GMR 893 

back calculation method was used. 894 

 895 

 Best: L∞ random Fixed effects Measured only 

cor(LK) -0.85 -0.96 -0.96 

σε 2.38(2.21-2.56) 4.93(4.63-5.26) 4.68(4.26-5.18) 

σL 6.6(5.6-7.9)     

μL 120.2(117.2-123.3) 123.4(118.7-129.1) 126.1(119.7-134.8) 

μK 0.21(0.2-0.23) 0.20(0.18-0.23) 0.19(0.16-0.22) 

t0 -1.62(-1.76-1.49) -1.62(-1.89-1.38) -1.63(-2.01-1.32) 

     896 

 897 

 898 

Table 6. Growth parameters estimated by different models applied to tagging data and spine 899 

readings from previous studies of North Atlantic albacore. The parameters σ2
L∞ or σ2

K   are the 900 

estimated standard deviation between individuals, with zero implying no variation found. If no 901 

value is given, the model did not include individual variation. The parameter σ2
e is the normal 902 

variance of the residual  error and σ2
m is the release measurement error in the model. Normal 903 

variance  error was estimated for tagging data set (σ2
e T ) and spine data set (σ2

e S).  904 

 905 

                    

   Model estimates      

Model Data n L∞ (cm) σ2
L∞ K(y-1) σ2

K σ2
e σ2

m to (y) 

von Bertalanffy model  [1] Spines 352 124.7  0.23    -0.989 

Model 3 [2] Tag data 298 105.6 59.1 0.33  12.4   

Model 4 [2] Tag data 298 105.6 68.7 0.33  7.7 7.6  

Model 7 [2] Tag data 298 105.6 68.7 0.33 0 7.7   

Tagging (Equation 3) [3a] Tag data 309a 110.5 55.04 0.29  12.9   

von Bertalanffy model  [3b] Spines 761b 127.1  0.18  21.7  -1.616 

von Bertalanffy model  [3a+b] Spines+Tag a + b 122.2 0 0.21   21.56 T  -1.338 

              22.15 S     

          

[1] Bard, 1981, von Bertalanffy model.        

[2] Ortiz de Zárate and Restrepo, 2001, using von Bertalanffy models adapted by Hampton (1991).  

[3a] Santiago and Arrizabalaga, 2005, using von Bertalanffy models adapted by Hampton (1991).  

[3b] Santiago and Arrizabalaga, 2005, spines  von Bertalanffy model.   

[3a+b] Santiago and Arrizabalaga, 2005, spines + tag  joint analysis von Bertalanffy model.  
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Figure captions 908 

 909 

Figure 1. Map of the study area in the Northeast Atlantic Ocean. Albacore spine samples 910 

locations in 2011 and 2012. 911 

Figure 2. Length frequency distribution of  sampled albacore. Years 2011 and 2012 combined.  912 

Figure 3. Residuals and QQ-normal plots of the residuals from (a-b) a linear regression of length 913 

against spine diameter, and (c-d) a linear regression of log(length) against log(spine diameter). 914 

Figure 4. (a) Measured lengths and mean line for each kind of regression, and  lengths predicted 915 

from each spine diameter using (b) GMR, (c) log-GMR and (d) log- linear regression, with 916 

measured lengths shown for comparison.  917 

Figure 5. Sample sizes used in growth model fitting, for (a) all measured and back-calculated 918 

lengths, (b) fish subsampled so that sample sizes are more equal, (c) only young fish (1-5 age), 919 

(d) all measured lengths, and (e) measured lengths subsampled so samples sizes are more equal, 920 

and (f) only young measured fish with an equal sample size.  921 

Figure 6. Histograms of the median values of L∞ across individual fish, from the DIC best model 922 

by back-calculation method (a) log-GMR, and (b) log- linear regression. These models were 923 

calculated from a subsample of the data and had individual variation in L∞ only.  924 

Figure 7. Median and 95% credible intervals of the population mean values of (a) L∞ and (b) K 925 

for models fitted to the log-GMR data, with varying sample sizes and with and without random 926 

effects in L∞. The results from models with measured data only are shown for comparison. 927 

Figure 8. The best model applied to the subsampled data from the log-GMR back-calculation. 928 

The solid line is the median growth curve, grey lines are individual growth curves, and points are 929 

length data. Growth model parameters fitted (mean L∞ = 120.2; K=0.21; t0 =-1.62). The growth 930 

curve fitted to the same data using fixed effects, and the curve fitted to a subsample of measured 931 

data only are shown for comparison (black dotted lines).    932 

 933 

Figure A1.  Priors and posteriors for the estimated parameters in the model fit to a subsample of 934 

measured data (a-d), a subsample of measured and log-GMR back-calculated data with fixed 935 

effects only (e-h), and the best model for the log-GMR data, with a random effect for L∞(i-m).   936 

 937 

Appendix.  938 

 939 

All of the models had Gelman-Rubin diagnostic values near one and an effective sample size 940 

greater than 100, which indicates that the MCMC has adequately converged on the posterior 941 

distribution (Lunn et al. 2013). Also the Bayesian P value, which is a diagnostic of model 942 

adequacy, was close to 0.50, as expected for good model fit (Table A1).  For two representative 943 

models, the priors and postereriors of the estimated parameters are shown in Figure A1.  The 944 

priros were all uninformative. The fact that the posteriors are well estimated and relatively 945 

narrow implies that the data were sufficiently informative to estimate these parameters.  946 
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 947 

Table A1. Diagnostics of model convergence and fit. The effective number of parameters should 948 

be more than 100 and the GR diagnostic near 1.0 for MCMC convergence. The Bayesian P value 949 

is a summary of the residuals, which should be near 0.5 for an adequate model fit.  950 

 951 

 952 

Data Subsample Error model Random effects Effective n GRD P value 

GMR all data   L∞, K 1200 1.01 0.50 

      L∞ 100 1.02 0.50 

      none 2800 1.00 0.49 

GMR subsample   L∞, K 430 1.01 0.50 

      L∞ 310 1.01 0.50 

      none 480 1.00 0.49 

log-GMR all data   L∞, K 490 1.01 0.50 

      L∞ 100 1.02 0.50 

      none 2400 1.00 0.50 

    se weighted L∞ 1200 1.00 0.49 

    lognormal L∞ 110 1.01 0.50 

log-GMR subsample   L∞, K 870 1.00 0.49 

      L∞ 2100 1.00 0.49 

      none 1400 1.00 0.49 

    se weighted L∞ 4100 1.00 0.48 

    lognormal L∞ 360 1.01 0.48 

log-GMR young only   L∞ 630 1.00 0.50 

log-regression all data   L∞, K 560 1.02 0.50 

      L∞ 710 1.00 0.50 

      none 1300 1.00 0.50 

log-regression subsample   L∞, K 1000 1.02 0.49 

      L∞ 520 1.00 0.49 

      none 6900 1.00 0.50 

log-regression young only   L∞ 160 1.02 0.49 

Captured all data   none 340 1.01 0.49 

Captured subsample   none 2600 1.00 0.49 

Captured young only   none 1200 1.00 0.49 
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